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I. Introduction 
 Computational Fluid Dynamics (CFD) has enormous potential to impact the analysis, design, and 
optimization of U.S. Air Force systems. However, the predictive capability of CFD depends not only on 
the validity of the sub-models employed (e.g., turbulence, chemistry, multi-phase flow) and the 
uncertainties present in the system and surroundings, but also on the ability to reliably estimate and 
reduce numerical errors (Oberkampf and Roy, 2010; Roy and Oberkampf, 2011). While there are many 
sources of numerical error in a CFD simulation, the largest and most difficult source to estimate (and that 
our proposed effort targets) is the error related to the resolution and quality of the spatial mesh, i.e., the 
spatial discretization error. For example, the recent AIAA Drag Prediction Workshops examined 
simplified transport aircraft challenge cases computed by numerous CFD practitioners; however, even 
after three such workshops, analysis of the results found that “grids remain a first order effect” (Morrison 
and Hemsch, 2007). While this proposal is focused on the reliable estimation and control of discretization 
error in CFD, the proposed techniques also apply to other areas such as computational structural 
mechanics, computational heat transfer, etc. 
 Most compressible CFD codes employ finite volume or finite difference discretizations. While there 
has been a great deal of work on discretization error estimation for finite element method (mainly for 
elliptic problems), compressible CFD codes tend to rely on simple approaches such as Richardson 
extrapolation. The main drawback to Richardson extrapolation is that it requires two, or even three, 
systematically-refined grids in order to obtain the error estimate. For most practical applications, each 
grid cell is usually refined by a factor of two for each spatial direction, resulting in eight new fine grid 
cells being generated for each coarse grid cell. For 3D applications, if the coarse grid uses 10 million 
cells, then two additional levels of refinement would involve 80 million and 640 million cells. Such large 
cell counts are prohibitively expensive, especially when the original coarse grid provides adequate 
solutions and the additional grid levels are simply required for the error estimates. Reliable discretization 
error estimates are needed both for the estimation of total predictive uncertainty in a simulation and to 
provide a stopping criteria for mesh adaptation strategies. 
 Automatic mesh adaptation for CFD has been a goal of researchers for more than three decades. 
However, an examination of current government and industry CFD codes shows that the dream of robust 
and automatic mesh adaptation has not yet been realized. The few CFD codes that do claim to do mesh 
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adaptation usually drive it with simple criteria such as solution gradients or curvature (i.e., Hessians); 
however, these approaches can fail disastrously for complex problems (Ainsworth and Oden, 2000; 
Dwight, 2008). Mathematically rigorous approaches for driving mesh adaptation are discussed in this 
proposal. Once the strategy for driving the adaption is chosen, a technique must be chosen for actually 
accomplishing the adaptation. Adaptation approaches for compressible CFD computations are practically 
limited to mesh movement (i.e., r-adaptation) for structured grids and r- and h- adaptation (i.e., local cell 
additions/deletions) for unstructured grids. Adaptation based on changing the local formal order of 
accuracy of the scheme (i.e., p-adaptation) for compressible CFD codes (especially on unstructured grids) 
is difficult, although some progress is being made through the use of discontinuous Galerkin methods 
(Hesthaven and Warburton, 2008). Automatic mesh adaptation is required for complex CFD problems in 
order to obtain reliable discretization error estimates. 
 Inaccurate prediction of aerodynamic loads was found to be the leading cause of unanticipated 
structural response or damage (Love et al., 2003), costing the U.S. Air Force billions of dollars and 
adversely impacting system readiness. Our approach will provide designers and analysts with techniques 
to quantify and reduce discretization error in CFD predictions without the overhead of creating, and 
solving on, multiple meshes. Our work will lead to significant improvements in the accuracy and 
efficiency of CFD predictions of aerodynamic loads. The outcomes of the proposed work will be 
improved aerodynamic predictions for preliminary design, parametric studies, sensitivity analysis, 
uncertainty quantification, optimization, optimization under uncertainty, and multiphysics computations. 

II. Background 
 The discretization error is the numerical error due to the mesh and time step chosen for the 
simulation. It is formally defined as the difference between the exact solution to the discrete equations 
and the exact solution to the underlying partial differential or integral equations (referred to collectively 
as the PDEs in this proposal). This relationship is given in equation form as 

uuhh
~  (1) 

where h  is the local discretization error, uh is the numerical solution (neglecting iterative and round-off 

error), and u~  denotes the exact solution to the PDEs.  

Truncation Error Framework 

 The truncation error is the difference between the discrete equation and the underlying PDE and can 
be found by using Taylor series expansions. A simple example of a truncation error analysis follows. 
Consider 1D steady Burgers’ equation  

02

2


dx

ud

dx

du
u   (2) 

which provides a simple, scalar, nonlinear model equation for the Navier-Stokes equations as it contains 
nonlinear convection and linear diffusion with constant viscosity . Burgers’ equation will be used as a 
simple example throughout this proposal. For a simple second-order accurate finite difference 
discretization of Burgers’ equation using a constant mesh spacing h = x, a truncation error analysis gives 
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where Lh(u) is the discrete operator, L(u) the PDE operator (here it is restricted to the nodes), and h(u) is 
the truncation error. The discrete equations are exactly satisfied by the discrete solution at the nodes uh 
(i.e., 0)( hh uL ), the PDE is exactly solved by its continuous solution  (i.e., 0)~( uL ), and the truncation 
error operates on a continuous function but produces discrete values. This is a general relationship for 
arbitrary (but smooth) u(x) which assumes appropriate operators are used to restrict continuous functions 
to discrete points or prolong discrete functions to a continuous space (see the Technical Approach section 
for a more rigorous discussion). Using the above operator notation, this relationship can be expressed as 
the Generalized Truncation Error Expression (GTEE) (Roy, 2009 and 2010a): 

)()()( uuLuL hh  . (3) 

 The relationship between the truncation error and the discretization error can be established by 
examining the continuous discretization error transport equation. Inserting the exact solution to the 
discrete equations uh into Equation (3), then subtracting the original (continuous) governing equation 

0)~( uL   gives 

0)()~()(  hhh uuLuL  . 

If the operator is linear (or has been linearized by assuming huu ~ ), then )~()~()( uuLuLuL hh  . 
Employing the definition of the discretization error from Equation (1) results in 

)()( hhh uL    (4) 

which for Burgers’ equation becomes 
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Equations (4) and (5) represent a continuous transport equation (similar to the error equation in finite 
elements) which can be solved on the same grid as the original problem to estimate the discretization 
error. It shows that discretization error is transported in the same manner as the solution, and that it is 
locally generated by the truncation error. When the truncation error is reduced, then the local source for 
the discretization error is also reduced, leading to less discretization error “production” over the domain. 
Broadly speaking, when globally “good” numerical solutions are desired, then the truncation error is the 
ideal driver for mesh adaptation (Baker, 1997; Roy, 2009). When only a small number of solution 
functionals are of interest (e.g., lift or drag in an aerodynamics simulation), then adjoint methods can be 
used to account for the sensitivity of the solution functional to local truncation errors (e.g., Pierce and 
Giles, 2000; Venditti and Darmofal, 2003). 
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Discretization Error Estimators 

 The discretization error h was given in Equation (1) and is formally defined as the difference 
between the exact solution to the discrete equations uh and the exact solution to the underlying PDEs u~ . 
The spatial discretization error is generally the largest contributor to the overall numerical error, with the 
other contributors being temporal discretization error, iterative convergence error, and round-off error. 
There are two types of discretization error estimators (Roy, 2010a). The first involves comparing the 
numerical solution (or its gradients) to higher-order accurate estimates of the solution (gradients). 
Included in this category are Richardson extrapolation for the solution and solution functionals which 
requires solutions on multiple meshes (Roy, 2005) and recovery-based methods for gradients from finite 
elements (e.g., Zienkiewicz and Zhu, 1992). The second class of methods for estimating discretization 
error employs either the continuous or discrete residual (not to be confused with the iterative residuals 
which are often used to monitor iterative convergence) or, equivalently, the truncation error. Residual-
based methods employ information about the problem being solved and include error transport equations 
(e.g., Cavallo and Sinha, 2007), defect correction (e.g., Skeel, 1986), adjoint methods (e.g., Venditti and 
Darmofal, 2003), and explicit/implicit residual methods from finite elements (Ainsworth and Oden, 
2000). Finally, there is a hybrid approach called least squares extrapolation where the extrapolation 
employs unknown, spatially varying coefficients which are determined by minimizing the residual on a 
finer mesh (Garbey and Shyy, 2003).  
 Spatial discretization error is the most difficult type of numerical error to estimate reliably. 
Regardless of the approach used to estimate the discretization error, the numerical solution(s) must be in 
the asymptotic range in order to obtain reliable estimates. The asymptotic range is defined as the range of 
mesh resolutions where the discretization error reduces at the theoretical (i.e., formal) rate with mesh 
refinement. This asymptotic range is defined only in terms of systematic mesh refinement (Oberkampf 
and Roy, 2010) where the mesh is refined uniformly by a factor h in each coordinate direction, e.g., 

refrefref z

z

y

y

x

x
h














  (6) 

and the mesh quality is constant or improves with mesh refinement. Ensuring systematic mesh refinement 
can be challenging, especially for unstructured meshes which contain more than one type of mesh 
topology (e.g., hexahedral, tetrahedral, and prismatic elements).  
 Verifying that the solutions are in the asymptotic range is traditionally done by computing the 
observed order of accuracy using numerical solutions on three systematically-refined meshes. For 
systematic refinement by the factor r, one has hfine = h, hmedium = rh, and hcoarse = r2h and the observed 
order of accuracy p̂  can be found as (Roache, 2009): 

)ln(

ln
ˆ

2

r

ff

ff

p
hrh

rhhr














 . (7) 

The grid refinement factor can generally be as small r = 1.1 without round-off and iterative error polluting 
the results; however, from a practical standpoint, a refinement factor of r = 2 is often used which implies 
insertion of new nodes between each existing node for structured grids and local sub-division of elements 
in unstructured grids. For three-dimensional flows, r = 2 results in a factor of 8 increase in total grid cells 
for each level of refinement and can thus be prohibitively expensive. Furthermore, the observed order of 

DISTRIBUTION A: Distribution approved for public release.



5 
 

accuracy will only match the formal order when all three grid levels are in the asymptotic range. A major 
challenge is to obtain reliable discretization error estimates without requiring solutions with hundreds of 
millions of cells. For practical problems, it is our opinion that the asymptotic range is not achievable (or at 
least demonstrable) without effective local mesh adaptation strategies. 

Truncation Error and Residuals 

 The truncation error can be related to the residuals used in residual-based error estimators and adjoint 
methods. Inserting the numerical solution uh into the GTEE given in Equation (3) gives the continuous 
residual  

)()( hhh uuL   (8) 

which is analogous to the finite element residual (Ainsworth and Oden, 2000) and the source term used in 
the differential form of defect correction (Skeel, 1986). If instead the exact solution to the continuous 
governing equation u~  (or an approximation thereof) is inserted into the GTEE, one obtains the discrete 
residual 

)~()~( uuL hh  . (9) 

It is this discrete residual (or its approximation) that is approximated in many adjoint methods (Venditti 
and Darmofal, 2003) and discretization error transport equations (e.g., Shih and Williams, 2009). 

Mesh Adaptation 

 There are two main approaches for performing mesh adaption. Mesh refinement (h-adaptation) 
provides for the sub-division of mesh cells to improve mesh resolution, while mesh movement (r-
adaptation) seeks to move mesh cells from one region to another. For general unstructured grid methods 
the h-adaption approach is the most popular, while for structured grid methods the r-adaption approach is 
most often used. In both h- and r-adaptation, weighting functions are generally employed to drive the 
adaptation process. Regardless of how the adaptation is performed, the more difficult challenge is finding 
an appropriate criterion to adapt on. The mesh adaptation criterion that is found in most commercial CFD 
codes is based on solution features such as solution gradients, solution curvature, vortex cores, or shock 
waves. However, feature-based adaptation is certainly not optimal (Roy, 2009) and can even fail to reduce 
the discretization error in some cases (e.g., Ainsworth and Oden, 2000; Dwight, 2008).  
 Since it is the discretization error that one would like to reduce, at first glance, it might appear that the 
discretization error would be a good criterion to drive the adaptation process. However adaptation based 
on the discretization error is prone to adapting to components of the discretization error that have been 
transported from other regions of the domain rather than the error that is locally generated (Gu and Shih, 
2001; Roy, 2009). The successful use of recovery-based mesh adaptation in finite elements, where 
adaptation is driven by the estimated discretization error in the solution gradients, relies on the 
superconvergence property of finite element methods (Ainsworth and Oden, 2000), as well as possibly the 
elliptic mathematical character of the equations. A recovery-type method for finite volume schemes has 
also been developed based on the solution interpolation error (e.g., see McRae 2000). Recovery-based 
methods are not appropriate for driving mesh adaptation in cases where the governing equations are 
hyperbolic or when finite difference or finite volume methods are used. 
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 Examination of the continuous discretization error transport equation (called the error equation in 
finite elements) given by Equation (4) shows that underlying PDE transports the discretization error in the 
same fashion as the solution properties. For our Burgers’ equation example, the error transport equation 
given by Equation (5) shows that the error will be both convected at the local velocity and locally diffused 
according to the viscosity. More importantly, it shows that the truncation error serves as a local source 
term for the discretization error; thus it is the truncation error (or its approximation) that should be used to 
drive the mesh adaptation process. The simplest approach is to use the magnitude of the local truncation 
error to drive the adaptation process. A more advanced approach is to account for both the mesh 
resolution components and the mesh quality components (stretching, skewness, aspect ratio, etc.) when 
adapting (Yamaleev, 2001; Alyanak et al., 2011). Finally, if one is interested in only a small number of 
solution functionals (e.g., lift and drag), adjoint methods can be used to drive adaption by including 
sensitivities of those functionals to the local truncation error (e.g., Venditti and Darmofal, 2003; Wang 
and Mavriplis, 2009; Fidkowski and Darmofal, 2011).  

III. Objective 
 The overall objective of our effort was to develop and demonstrate robust, reliable, and automatic 
methods for controlling discretization error for CFD applications. These methods are based on rigorous 
theory rather than ad hoc approaches such as feature-based adaptation. Given the ambitious nature of this 
objective, we limit the scope of the problem by restricting our applications to steady-state CFD problems 
on structured grids; however, we specifically targeted approaches which are extendible to unstructured 
grids. The focus is on practical CFD applications, with the ultimate application being the steady 3D 
Reynolds-Averaged Navier-Stokes (RANS) equations. The RANS equations are chosen for their 
applicability to design, analysis, and optimization of aerospace flight and propulsion systems. The 
proposed approaches are applicable to all discretization methods (finite difference, finite volume, and 
finite element) and ultimately extendable across the entire Mach number range including subsonic, 
transonic, supersonic, and hypersonic speeds. 

IV. CFD Code 
 The CFD code that served as the basis for this work is the finite volume Euler/Navier-Stokes solver 
developed by our group (Derlaga et al., 2013). The code employs structured grids and has options for 
various explicit and implicit iterative schemes. Several code enhancements were made during this effort 
including extension to laminar Navier-Stokes, 3D, and parallelism. All coding implementations were 
done in a modular fashion to allow future code development.  

V. Technical Approach 
 Our work can be grouped into four broad tasks. Our initial efforts focused on methods for estimating 
the truncation error. The second task addressed the further development and refinement of the GTEE 
framework including the required properties of the interpolation operators to be used. The third task 
involved the development and evaluation of residual-based discretization error estimators within the 
GTEE framework and includes error transport equation, defect correction, and adjoint methods. The final 
task was to develop and evaluate mesh adaptation strategies that are based on the residual/truncation 
error. 
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VI. Truncation Error Estimation  

Framework for Residual-Based Discretization Error Estimation 
 As discussed earlier, the original Generalized Truncation Error Expression (GTEE) requires 
appropriate operators to prolong discrete quantities (e.g., finite volume solutions at cell centers) to 
continuous functions and to restrict continuous functions to cell center or nodal locations (Roy, 2009). We 
introduce the interpolation function I  which can perform both prolongation and restriction operations. 
This interpolation function is designed to be read from bottom to top. Consider the following examples 
where hu  is a discrete numerical solution on a fine mesh, hu2  is a discrete numerical solution on a coarse 

mesh, and u~  is the continuous exact solution to the governing PDEs: 

 prolongation of hu  to a continuous space: hhuI  

 prolongation of hu2  to mesh h:   h

h

huI 22  

 restriction of hu  to mesh 2h:   h

h

h uI 2  

 restriction of u~ to mesh h:   uI h~  

When no subscript or superscript is present, a continuous function is assumed. Using this interpolation 
operator, the GTEE can be rigorously recast for finite difference and finite volume schemes as 

)~()~()~( wwLIwIL h

hh

h   (10) 

for any general smooth function w~ . The three terms in Equation (10) refer to nodal values for finite 
difference methods and cell-averaged values for finite volume methods. In addition, the discretization 
error definition from Equation (1) can be formulated either continuously or discretely as 

uIuuuI h

hhhh
~or~   , (11) 

respectively.  
 If we consider a discretized function, then the GTEE can be written as 

)()()( hhhhh

h

hh wIwILIwL  . (12) 

The prolongation from discrete space to continuous space is an approximation that is better written as 

)( 1 qq

hh hOII  (13) 

to account for the error in the prolongation, where q is the order of the reconstructed polynomial for 
which the k-exact and ENO schemes are q+1 order accurate. Equation (12) is then written as 

)()())(()( 11   q

h

q

hh

q

h

q

h

h

hh hOwIhOwILIwL  . (14) 

or 
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)()()()( q

h

q

hhh

q

h

h

hh hOwIwILIwL   . (15) 

where q  is an order of accuracy which is related to q but may be modified by nonlinearities in the L() 
and h() operators. Due to the error in the prolongation, it cannot be generally assumed that wh = IhIhwh 
unless finite volume consistent reconstructions/prolongations are used, i.e., reconstructions that will 
exactly integrate out to the average value over the cell.  
 As is evident from the GTEE, the truncation error is the difference between the discrete and 
continuous governing equations and has been shown to be the local source of discretization error in a 
numerical solution (Roy, 2009) where the discrete form of the discretization error is defined as the right 
side of Equation (11). Here, uh is the exact solution to the discrete equations such that Lh(uh) = 0, and u~  is 
the exact solution to the original governing equations such that 0)~( uL . The accurate estimation of 
truncation error is a key aspect to several residual-based discretization error estimation methods such as 
the error transport equations (Zhang et al., 2002; Qin and Shih, 2002), defect correction (Pereyra, 1965; 
Stetter, 1978; Skeel, 1986), and adjoint methods (Giles and Pierce, 2000). Also, as the local source of 
discretization error, truncation error has been shown to be an effective mesh adaption indicator (Roy, 
2009), possibly with adjoint weighting (Venditti and Darmofal, 2003).  
 The focus of this report is a truncation error estimation method which requires a prolongation of the 
numerical solution to a continuous space. Inserting the exact solution to the discrete equations uh into 
Equation (15), and noting that Lh(uh) = 0, results in 

)()()( q

h

q

h

h

h

q

hh hOuILIuI  . (16) 

The accuracy of the truncation error estimate is determined by comparing the estimated truncation error to 
the exact truncation error which requires the exact solution to the governing equations. It can be found by 
inserting the exact solution into the GTEE and, noting that 0)~( uL , gives 

)~()~( uILu h

hh   (17) 

where the exact and approximate truncation errors are related by 

)()()~( h

q

hhhhhh uIuIu   . (18) 

Various method of estimating truncation error have been developed and tend to be specific to the 
application. For example, adjoint methods typically use an embedded grid approach developed by 
Venditti and Darmofal (2003). This method inserts a coarse grid solution into a finer grid using a 
reconstruction method 

)()()( /
//

q

h

q

h

rh

qrh

h

rhhhh hOuIILIuI  . (19) 

where h represents the coarse grid and h/r represents the fine grid (refined by factor r). We modified this 
method (Phillips and Roy, 2011) to improve accuracy since the truncation error on the fine grid solution 
is still significant for second-order schemes with typical refinement factors of two. Equation (19) is 
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modified to include the effects the fine grid truncation error assuming that the truncation error is 

asymptotic so that 
fp

rh
h

r

/
   where pf is the formal order of accuracy of the truncation error: 

)(
1

)()( /
//

q

p

p

h

q

h

rh

qrh

h

rhhhh hO
r

r
uIILIuI

f

f

















 . (20) 

A detailed derivation is given in by Phillips and Roy (2011). The formal order of truncation error is 
related to the formal order of accuracy of the discretization error; however, for unstructured grids or grids 
with non-smooth transformations (e.g., with randomly perturbed nodes), the formal order of truncation 
error can be lower than the formal order of the discretization error (Diskin and Thomas, 2007). Shih and 
Williams (2009) estimated truncation error for the error transport equations by inserting a finer grid 
solution into the coarse grid discrete operator  

)()( // rh

h

rhhhhh uILuI  . (21) 

Fulton (2003) used a similar embedded grid approach for finite difference discretization schemes, but 
adjusted the truncation error estimate to take into account the relative magnitudes of the truncation error 
between the two grids 


















1
)()( //

f

f

p

p

rh

h

rhhhhh
r

r
uILuI . (22) 

Fraysse et al. (2012) extended Fulton’s work to finite volume methods and included the effects of 
iterative convergence error for numerical solutions which are not fully converged. Under this research 
grant, we followed a similar approach but re-interpolated the estimated truncation error back onto the 
computational grid 

)(
1

1)()( 1









 q

ph

rh

hrh

q

rh

h

qhhh hO
r

uILIIuI
f

 . (23) 

A detailed derivation is given in by Phillips and Roy (2011). 

Solution Reconstruction 
The cell average of the reconstructed solution is computed using a Curtis-Clenshaw (Clenshaw and 
Curtis, 1960) quadrature which is extended to multiple dimensions using Smolyak’s (Smolyak, 1963) 
sparse grid construction. We chose Curtis-Clenshaw over the more common Gauss quadrature because 
the integration points are nested (i.e., higher-order reconstructions use all of the lower order quadrature 
points) thus allowing adaptive reconstruction and inexpensive quadrature error estimates. The Curtis-
Clenshaw quadrature exactly integrates a q-th order polynomial using q+1 function evaluations in one 

dimension. The quadrature domain 


 is a hypercube over the range 0  


  1 so for integration of 
arbitrary cells a 1st-order polynomial is used to map the arbitrary cell to the quadrature domain where the 
highest polynomial order for each dimension is one. For example, in two dimensions the polynomial takes 
the form 
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211211111 )(  xxxx dcbax 


. (24) 

This polynomial is used to exactly constrain the transformation. Given the Curtis-Clenshaw function 
evaluation points cc


 and weights w

 , the integral of a function over an arbitrarily dimensioned hypercube 
is 

   



cc

i

N

j

ccjccjccj

iVi

Jwxf
V

dVxf
V 1

,,, )(det)(1)(1



. (25) 

where J is the Jacobian of the coordinate transformation and the weights can be found from Burkardt 
(2010). Because of the non-linear term in the transformation, the Jacobian is not necessarily constant. 
 The linear system for solution reconstruction is assembled from a stencil of Nst cells. To mitigate the 
effects of round-off error and prevent ill-conditioned systems, the reconstruction is computed on the 
domain fit =[0, 1] and requires an additional linear transformation to go from the fit domain to the 
Curtis-Clenshaw domain 

stst

ccn

fit
N

n

N

1)( 



 . (26) 

where n is the cell number in the reconstruction stencil. 
 Equation (25) is written more appropriately using matrix notation as 

 CPwuV cc

n

fit

T

cchii

 )()(
,  . (27) 

where for the i-th cell in the reconstruction stencil, w
  is a column vector of weights returned from the 

Curtis-Clenshaw quadrature, )( ixP


is the coefficient matrix for a polynomial fit of size Ncc  (k+1)d, and 

C


 is a column vector of the unknown polynomial coefficients. 
 The complete linear system is written as 

h

TuVCW


 . (28) 

where V


 is a column vector of cell volumes and for the n-th row  )( ccn

T

ccn xPwW 


 . If the stencil does 
not change, then this equation can be solved prior to computing the reconstruction for computational 
efficiency. For all solution reconstructions in this work, polynomial orders from one to four are 
considered. 

k-Exact Method 

The k-exact method developed by Barth (1990, 1993) was designed to conserve the mean value of the 
cell, reconstruct polynomials of degree k or less exactly, be compact, and be computationally efficient. 
For a polynomial of order k there are k+1 unknowns and Nst = k+1. For higher dimensions, the 
polynomial is a tensor product of one-dimensional polynomials with (k+1)d unknowns where d is the 
dimension and Nst = (k+1)d. A centered stencil is used for the interior of the domain and a shifted stencil 
near the computational boundary. The reconstruction guarantees that the average value over each cell 
used in the reconstruction reproduces the numerical solution  
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h

k

h

h

kh uIIu  . (29) 

The k-exact method is solved in a least squares sense by increasing the size of the stencil so that Equation 
3.25 is valid only for the cell of interest. The method implemented here results in the smallest possible 
stencil and is equally sized in each coordinate dimension. The conservation of the mean is important in 
the context of truncation error estimation so that 

0)( h

k

h

h

kh uIIL . (30) 

ENO Method 

The ENO method developed by Harten (1987) was extended to arbitrarily dimensions by Godfrey et al. 
(1993). The reconstruction-via-primitive ENO (RP-ENO) can achieve arbitrary high order accuracy, but 
is computationally expensive. Godfrey et al. (1993) also introduced a less computationally expensive 
dimensionally split ENO (DS-ENO) method but does not include cross-derivative terms. The basis of the 
ENO method is the selection of the stencil to reduce the variation of the solution used to compute the 
reconstruction. Starting at cell i, the difference between the solutions to the left (i - 1) and right (i + 1) are 
compared and the minimum is added to the reconstruction stencil. The divided difference is repeated until 
the stencil has Nst points. 

RP-ENO Method 

The RP-ENO scheme computes the left and right states of a cell using progressive one dimensional curve-
fits with the adaptive stencils. For a two-dimensional reconstruction the line-averaged solution in the -
direction is first computed from a one dimensional solution reconstruction where the stencil extends in the 
-direction 









2/1

2/1
, ),(1)(

j

j

hii dup 


 . (31) 

The reconstructed solution is evaluated at the cell boundaries ]),([ 2/12/1






 iiip   for all cells in the domain. 
Next, the solution is reconstructed at the left and right faces using a one dimensional reconstruction of the 
left and right face line averaged values with a stencil that extends in the -direction. The reconstructed 
solution is then used to compute the flux at the left and right cell faces. The process is repeated for the top 
and bottom faces of the cell by computing the line averaged solution in the -direction first. A similar 
process is followed for three dimensional reconstructions. 

DS-ENO Method 

The dimensionally split ENO scheme follows the same procedure except only one reconstruction is 
computed for each face to compute the line-averaged solution in the -direction and the left and right 
faces and the line-averaged solution in the -direction at the top and bottom faces. The average solution is 
used to compute the flux instead of the reconstructed local solution which does not capture the cross-
derivative terms. The computational cost of the DS-ENO method is an order of magnitude cheaper than 
the RP-ENO and k-exact reconstruction methods; however, in our case, computational expense is less of a 
concern since the truncation error is generally a one-time estimate. 
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Truncation Error Estimation Results 

Burgers’ Equation 

Burgers’ equation is a useful scalar example problem to illustrate and initially test solution reconstruction 
methods. Burgers’ equation is chosen because it is analogous to the Navier-Stokes equations including a 
non-linear convective term and a linear diffusive term. The conservative form of Burgers’ equation is 

dS
x

uu

t

u

S

 


















2

2

. (32) 

An exact solution for a viscous shock is 









 x

L
uxu ref 2

Retanh)(~ . (33) 

where Re is the Reynolds number, L is a 
reference length (here L = 8), and uref is chosen 
as two. The exact solution with Re = 16 is 
shown in Figure 1. This equation is solved 
using an explicit, cell-centered finite volume 
scheme where 

02/12/1
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







 


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i . (34) 

and 

  2/2 1

1
22

1
2/1

ii

iiiin

i
xx

uuuu
F












  . (35) 

Green’s theorem is used to compute the gradient u/x in Equation (35) which is equivalent to a finite 
difference on a Cartesian grid.  

 
Figure 1.  Burgers’ Equation exact solution for Re = 

16 and 513 grid nodes. 
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The full truncation error expression 
consists of an infinite series and can only be 
exactly calculated using Equation (17) which 
requires the exact solution; however, for 
sufficiently fine grids, only the leading 
truncation error terms need to be accurately 
estimated. In general, the leading terms are not 
derived because of the complexity of 
discretization schemes, but Burgers’ equation 
is simple enough that this is relatively easy. On 
a grid with equal spacing the leading truncation 
error terms are 

 
 
 
 
 
 

)(
24
1

8
1

8
3)( 42 xOuuuuuxu xxxxxxxxxxh 








  . (36) 

From Equation (33) it is clear that this is a second-order accurate scheme and that the next highest 
truncation error terms are fourth-order accurate. For an accurate estimate of the leading terms the error 
between the estimated truncation error and the exact truncation should decrease at at least a fourth-order 
rate. 

 
Figure 2.  Burgers’ Equation truncation error 

estimate for Re = 16 and 513 grid nodes. 
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 The discrete solution with Re = 16 
computed using 513 grid nodes is reconstructed 
using the k-exact reconstruction method with k 
= 2, 3, and 4. The minimum value for k is two 
because the highest derivative in the governing 
equations is two and any value of k less than 
this would result in a derivative term reducing 
to zero. The truncation error is estimated from 
the solution reconstructions using Equation 
(16) and the results are shown in Figure 2. The 
estimated truncation error is compared to the 
exact truncation error computed using Equation 
(17). The estimated truncation error for k = 4 is 
indistinguishable from the exact truncation 
error and the error between the exact and 
estimated truncation error decreases at a fourth-
order rate. The other two reconstruction 
methods, k = 2 and 3, do not qualitatively 
match well, and the error between the exact 
and estimated truncation error decreases at only 
a second-order rate. Figure 4 compares the maximum truncation error estimate normalized by the 
maximum exact truncation error for a series of grids. The abscissa plots the grid spacing normalized by 
the finest grid spacing for 513 nodes. With grid refinement, it is clear that the estimated truncation error 
for k = 2 and 3 will never accurately represent the exact truncation error since they asymptote to a 
constant error with mesh refinement. The implications of this observation would mean a minimum 
polynomial order k is required to accurately 
estimate truncation error specific to each 
discretization scheme, and is equal to the 
highest derivative found in the analytic 
truncation error. 

Euler and Navier-Stokes Equations 

 The same process is applied for the Euler 
and Navier-Stokes equations as was done for 
Burgers’ equation. The initial goal of this 
research is to determine the minimum order 
polynomial reconstruction required to 
accurately estimate the truncation error for the 
Euler and Navier-Stokes equations. Solutions 
and truncation error estimates are computed 
using three different grid families with the 
coarsest grid being 1717 nodes and the finest 
grid being 257257 nodes. An example of each 
is shown in Figure 3. The Cartesian grid is the simplest and is expected to be the easiest to estimate 

 
Figure 4.  Burgers’ equation normalized maximum 
truncation error estimate vs. grid refinement for Re 

= 16. 
 

 
Figure 3.  Curvilinear grid, 3333 grid nodes. 
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truncation error. The complexity is increased on the skewed grid; however, the linear grid transformation 
can exactly represent the grid distribution. The final grid is a curvilinear grid with a sinusoidal 

distribution which cannot be exactly represented by the linear grid transformation.  
 Truncation error estimates for Euler and Navier-Stokes solutions are computed using the curvilinear 
grid. The different methods include k-exact, RP-ENO, DS-ENO, the coarse grid method used by Fulton 
(2003), with and without the correction term, and the fine grid method used by Venditti and Darmofal 
(2003), with and without the correction term, for reconstructions with k = [1,2,3,4]. The effectivity index 
(Ainsworth and Oden, 2000) is used to evaluate the truncation error estimates which is the truncation 
error estimate normalized by the exact truncation error, 222 )~(/)(

LhLhhhL uuI   . Figure 5 shows the 

effectivity index for the energy truncation error for the supersonic Euler solution, and Figure 6 shows the 
effectivity index for the energy truncation error for the subsonic Navier-Stokes solution. The subsonic 
Euler and Supersonic Navier-Stokes results are very similar to the subsonic Navier-Stokes and supersonic 
Euler results, respectively. The energy equation was shown because it is the most complex truncation 
error term; however, the truncation error for the other equations behave in a similar manner.  

 
Figure 5.  Euler energy truncation error estimation comparisons on the curvilinear mesh for the 

supersonic solution with a viscosity of μ = 1Pas. 
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 For both the Euler and Navier-Stokes equations, the k-exact reconstruction method is generally the 
best performing method. For k = 1, the truncation error estimates decrease at a first-order rate where the 
exact truncation error decreases at a second-order rate. The lower rate results in the estimated truncation 
error diverging from the exact truncation error with grid refinement. For k = 2 and greater, the k-exact 
truncation error estimates are very accurate and outperform the other methods with only a few exceptions. 
Based on our previous results with Burgers’ equation, it was expected that a higher-order reconstruction 
would be required for the Navier-Stokes equations; however, all results show that k = 2 is sufficient for 
both the Euler and Navier-Stokes equations. A possible explanation for this result is due to the 
discretization scheme for the diffusion terms. The derivatives are computed using Green’s theorem which 
reduces to a second-order central difference for one dimensional solutions on an evenly spaced grid. The 
truncated terms for the second-order central difference is O(x2) and O(x4). The convective terms have 
higher order terms which are O(x2) and O(x3). This would mean that the convective truncation error 
terms will dominate the error in the truncation error estimate. A higher viscosity Navier-Stokes solution 
was computed to try to increase the dominance of the diffusive terms. The manufactured solution source 
terms were compared, and the diffusive terms were on the same order of magnitude as the convective 
terms. Further evidence that k = 2 is sufficient is shown by the divergence of the ENO methods for the 
supersonic solutions shown in Figure 7 and Figure 8 which are missing derivatives due to the lower 
dimension reconstruction. If the diffusive terms were insignificant, the ENO methods would be accurate 
as shown in Figure 7. It might be possible that these terms could dominate for highly diffusive areas of a 
flow requiring a minimum of k = 3; however, there is no evidence to suggest that k = 2 is not sufficient. 
 For the Euler equations and k = 1, the ENO truncation error estimation methods decrease at a first-
order rate similar to the k-exact method and results in an effectivity index that diverges with grid 
refinement (not shown in the figure). For k = 2, the ENO truncation error estimation methods decrease at 
a third-order rate resulting in a substantial under prediction of the truncation error. The exact reason for 

 
Figure 6.  Navier-Stokes energy truncation error estimation comparisons on the curvilinear mesh for 

the subsonic solution with a viscosity of μ = 1Pas. 
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this behavior is not yet understood; however, the ENO schemes are used for solution reconstruction where 
k = 2 is third order accurate. The truncation error estimate for k = 2 could be an estimate of the truncation 
error not for the current MUSCL extrapolation upwind method but an approximation of the third-order 
accurate ENO scheme; however, the truncation error estimates for k = 3 and k = 4 results in accurate 
truncation error estimates with only slightly higher error than the k-exact method. For the Navier-Stokes 
equations, the subsonic solution follows a similar trend as the Euler equations; however, for the 
supersonic solution the ENO methods do not accurately estimate the truncation error. The estimate is 
zeroth order accurate because the ENO methods cannot represent the cross-derivative terms. The 
difference between the subsonic and supersonic Navier-Stokes solution (shown in Figure 7) is thought to 
be due to the relative magnitude of the convective and diffusive terms. The supersonic solution has much 
larger convective terms due to the larger magnitude velocity and velocity gradient and the zeroth order 
terms are more apparent. The ENO schemes can be used for truncation error estimation; however, 
accuracy would suffer in diffusive dominated flow regimes such as boundary layers or shear flows. The 
effects of a more dominant diffusive term is shown in Figure 8 compared to Figure 7. (Due to stability 
issues with the higher viscosity, only three grid levels converged iteratively.) The results are similar, 
except the truncation error estimated from the solution computed with a viscosity of 50Pas diverges more 
quickly than the truncation error estimated from the solution computed with a viscosity of 1Pas. 
 For the coarse grid truncation error estimation methods, solution reconstruction is used to interpolate 
the coarse grid truncation error estimate back to the computational mesh. The uncorrected coarse grid 

truncation error estimation method is off by a factor of )1/(1 fp
r ; however, the corrected method 

accurately estimates the truncation error. The most accurate reconstruction scheme for the corrected 
method uses a k-exact reconstruction method with k = 1 for the Euler equations. For the Navier-Stokes 

 
Figure 7.  Navier-Stokes energy truncation error estimation comparisons on the curvilinear mesh for 
the subsonic solution with a viscosity of μ = 1Pas. 
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equations, k = 1 underestimates the error for the subsonic solution and the more diffusive supersonic 
solution; therefore, for the Navier-Stokes equations k = 2 is recommended. 

 For the fine grid truncation error estimation methods, solution reconstruction is used to interpolate the 
computational solution onto a finer mesh that is refined by a factor of two in all coordinate directions. The 
uncorrected fine grid truncation error estimation method underestimates the truncation error. Corrected by 

a factor of )1/( ff pp
rr  results in an accurate truncation error for k = 2 or higher for both the Euler 

equations and the Navier-Stokes equations. The fine grid method with the correction is one of the most 
accurate truncation error estimators evaluated. The method is more accurate for k = 2 than the ENO and 
coarse grid methods and indistinguishable from the k-exact method for all solutions except the highly 
diffusive Navier-Stokes solutions in which the k-exact truncation error estimate is more accurate. It is 
important to note that the test problems are very smooth. The correction term assumes that the truncation 
error decreases at the formal order of accuracy which may not be the case for highly non-asymptotic 
solutions, solutions with poor grid quality, or solutions with singularities/discontinuities. 
 Contour plots of the Navier-Stokes energy truncation error estimates for the supersonic solution on 
the 3333 grid are shown in Figure 9. The reconstruction order for each method was chosen from the best 
results from the previous results shown. All contour plots have the same contour levels. All contour plots 
compare qualitatively well to the exact truncation error. The k-exact and fine grid method with the 
correction term compare very well to the exact truncation error. The coarse grid method with the 
correction factor also compares well but has a few peaks that are not present in the exact truncation error. 
The ENO methods qualitatively match well, but the truncation error estimates are not as smooth. The 
truncation error for the ENO methods on the 3333 grid is the most accurate estimate for the series of 
grid levels (see Figure 7, k = 3). On the 6565 grid the truncation error estimate begins to diverge. 
 

 
Figure 8.  Navier-Stokes energy truncation error estimation comparisons on the curvilinear mesh for 
the supersonic solution with a viscosity of μ = 50Pas. 
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In the presence of shocks, the order of accuracy of the numerical scheme reduces to first-order 

accurate. The same results were computed for first-order Euler and Navier-Stokes solutions to determine 
the minimum required reconstruction order for the truncation error estimation methods. The results are 
shown in Figure 10. The results show that the reconstruction order is one less than what is required for 
second-order accurate solutions for both the Euler and Navier-Stokes equations. All methods are accurate 
for k = 1 except the ENO schemes which require k = 2. The coarse grid correction term reduces to one 
(i.e., it is not needed) for first-order solutions and the fine grid correction term is two as expected. 

 

 
Figure 9.  Truncation error estimate contours for Navier-Stokes energy equation on a 3333 
curvilinear grid. 
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The results for all the truncation error estimation methods are summarized as follows. The two best 
performing methods are the k-exact and the fine grid method with the correction term. The k-exact 
method does not require the assumption of an order of accuracy which is a significant advantage, 
especially for more practical applications where the formal order of accuracy may not be achieved. For 
the first-order accurate methods, the ENO methods minimum required reconstruction order for the 
Navier-Stokes equations showed k = 2 is sufficient. This is because the diffusion terms (evaluated using 
Green’s theorem) are still second-order accurate while the convective terms are first-order accurate. The 
convective error terms dominate the truncation error and results in truncation error estimates that are 
nearly identical to the Euler equations. This result suggest that the ENO methods could be used in the 
vicinity of flow singularities such as shock or contact discontinuities, where the order of accuracy reduces 
to first order or below (Banks et al., 2008). 
 There are several uses for truncation error which include discretization error estimation and higher 
order solution correction. The possible discretization error estimation methods include the error transport 
equations (Zhang et al., 2002; Qin and Shih, 2002), defect correction (Pereyra, 1965; Stetter, 1978; Skeel, 
1986), and adjoint methods (Giles and Pierce, 2000). Defect correction is the least code intrusive to 
implement as the estimated truncation error is added as a source term, )()( h

k

hhh uIuL  . The solution u  

is an estimate of the exact solution, and the discretization error is estimated by uuhh  . An example 
of defect correction is shown in Figure 11 computed using all truncation error methods for the supersonic 
Euler solution on the curvilinear grid. A slice is taken through the center of the domain at the j = 16 cell 
index. The k-exact and ENO truncation error estimation methods are the most accurate with the corrected 
coarse grid method performing well. The uncorrected coarse grid method is not accurate and 
overestimates the error significantly. The fine grid methods do not capture the shape of the discretization 
error very well. 

 
Figure 10.  Navier-Stokes energy truncation error estimation comparisons on the curvilinear mesh for 
the supersonic first-order solution. 
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 The second solution u  is a higher order accurate solution and can be used as a solution instead of 
estimating the discretization error. Again, for the supersonic Euler equations, the k-exact method is used 
to compute higher-order solutions shown in Figure 12. The expected order of accuracy is third-order 
because the k-exact method is estimating the leading truncation error terms which are O(x3). The order 
of accuracy begins very high and appears to be approaching third-order for the finest grid. The higher-
order discretization error is not as asymptotic as the second-order solution; however, the discretization 
error on the finest grid is on the order of 110-8 % error. The discretization error in the corrected solution 
is lower for all solution variables except for the pressure which is higher than the second-order solution, 
but because of the higher order of accuracy quickly decreases. The solver does not have any higher-order 
capability, the higher-order results come from the truncation error estimate only. 

 
Figure 11.  Defect correction example using the supersonic Euler solution on the 3333 grid. 
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VII. Residual-Based Discretization Error Estimation  
 In general, the focus of the discretization error estimation is local solution estimation. The local 
solution variables for the compressible Euler and Navier-Stokes equations are density, pressure, and 
velocity components. To evaluate the accuracy, contour plots are used; however, for a more quantitative 
analysis discrete L1- and L2-norms are used. The L1-norm is used when shocks are present in the solution 
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iLh
N 1

1

1
  (37) 

and the L2-norm is used otherwise 
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To compare the estimated errors to the exact errors, the effectivity index is used (Ainsworth and Oden, 
2000) 

2

2
2

Lh

Lh

L



   (39) 

where h is an estimated error and h  is the exact error. If the estimated error is accurate L2  1. For 
asymptotically accurate error estimates the effectivity index should approach one as the computational 
grid is refined. The effectivity index is used to evaluate local truncation error and local discretization error 
estimates for L1- and L2-norms where appropriate. 
 The residual-based discretization error estimation methods that we will investigate include error 
transport equations, defect correction, and adjoint methods. All three of these methods have both a 
continuous and a discrete implementation and use discrete or continuous residuals that can be related back 

 
Figure 12.  Discretization error in the defect correction solution discretization error (left) and the order 
of accuracy (right) computed using the k-exact truncation error estimation method for the supersonic 
Euler solution. 
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to the truncation error. The error transport equations and defect correction both involve solutions of 
additional governing equations on the same mesh with residuals/truncation errors acting as local source 
terms; however, the error transport equations involve an additional linearization step while defect 
correction relies on the “nearness” of a nearby problem to the original one. Here we reformulate all three 
residual-based error estimations methods within the new GTEE framework of Equation (10).  

Error Transport Equations 
 Using the new GTEE framework given by Equation (10), the continuous discretization error transport 
equation can be found as follows. First, insert hhuI  into the GTEE and subtract the restriction of the PDE 

( 0)~( uLI h ) to give 

)()~()( hhh

h

hh

h uITEuLIuILI   (40) 

where we have assumed that 0)()(  hhh

h

h uLuIIL  (i.e., that the restriction of the prolongation 

returns the discrete value). Prolonging Equation (40) to a continuous space and making the approximation 
)~()~( wLwLII h

h   (which is not generally true, but may be a reasonable approximation) results in: 

)()~()( hhhhhh uITEIuLuIL  . (41) 

If the equations are linear, or if we employ simple linearization, then )()~()~()( LuuILuLuIL hhhh   
thus resulting in the continuous discretization error transport equation 

)()( hhhh uITEIL   (42) 

which for our 1D Burgers’ equation example becomes: 
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hhhh uITEI
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


.  

 Here we propose a more advanced linearization by noting that the operators for Burgers’ equation in 
Equation (41) can be written out as 

2

2
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2 ~~~)()()~()(
dx

ud

dx

ud
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dx

uId

dx

uId
uIuLuIL hhhh

hhhh   . (43) 

Using the definition of the discretization error from Equation (11) to give  uuI hh
~  and substituting 

into Equation (43) gives 
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uuLuIL hhhh

hh     

 
or simply  
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dx
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d
uuLuIL hhhh
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
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 . (44) 

where the overbar on the PDE operator indicates a linearization. With this advanced linearization, the 
continuous discretization error transport equation for Burgers’ equation becomes 

dx

uId
uITEI

dx
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d
u hh

hhhh

)()(~
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





 .  

It is important to include the additional source term since both the truncation error and the discretization 
error  will have the same formal order of accuracy. As will be shown later, omitting this term results in 
error estimates which are incorrect by a fixed factor (e.g., they are always 30% low regardless of the level 
of mesh refinement). Shih and Williams (2009) address this linearization issue indirectly by formulating 
the residual on a finer mesh rather than employing the true truncation error. 

 A similar discrete discretization error transport equation can be found by inserting u~  into the GTEE 
and subtracting the discrete equations ( 0)( hh uL ) to give 

)~()~()( uTEuILuL h

h

hhh  . (45) 

If the equations are linear, or if we employ a simple linearization, then 
)()~()~()( hh

h

hh

h

hhh LuIuLuILuL   thus resulting in the discrete discretization error transport 

equation 

)~()( uTEL hhh   (46) 

which for the simple 2nd order accurate finite difference discretization of 1D Burgers’ equation becomes: 
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The more advanced linearization has 
x
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Note that the presence of the exact solution to the PDEs in the above error transport equations can always 
be approximated by the numerical solution and the error estimate: 

ii

h

i uuIu  ~~ . 

 Since we already have an implicit solution capability in our code, we have found that the following 
alternative linearization provides an efficient form of the error transport equations. The discrete error 
transport equations are derived by substituting the exact solution to the continuous governing equation 
into the GTEE given in (10), subtracting, 0)( hh uL , and noting that 0)~( uL : 

)~()~()( uuILuL h

h

hhh   (49) 
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The second term on the left-hand side can be linearized in a Taylor series expanded about the numerical 
solution uh: 

)()(
2

)()()~( 3
2

22

h
hhhhh
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h O
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u
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uLuIL 
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 









  (50) 

Inserting this equation into Equation (49), we obtain the final error transport equation result: 

)()()( 2
hhhhh

hh OuI
u

uL
 




 (51) 

The derivative is the global Jacobian of the linearized discrete operator which is required to implement an 
implicit scheme. The Jacobian is commonly available in flow solvers; however, the Jacobian required to 
solve the error transport equations should be the full higher order (e.g., second-order) left-hand side where 
only the first-order left-hand side may be required for an implicit solve. The above form of the error 
transport equation is approximate so the exact discretization error may not result if the exact truncation 
error is used; however, the error in Equation (51) decreases at a much higher rate and would introduce 
non-negligible error only in the case of very large discretization errors. 

Defect Correction 
 Defect correction methods were originally developed nearly 50 years ago in order to improve the 
accuracy of (or estimate the numerical error in) numerical solutions to ordinary differential equations 
(e.g., Zadunaisky, 1966; Stetter, 1978). More recently, defect correction has been used in CFD to increase 
the accuracy of 1st order spatial discretization schemes (Layton et al., 2002; Naumovich et al., 2010). We 
are interested in using defect correction methods to estimate the discretization error in CFD solutions. 
There are two main types of defect correction (Skeel, 1986): continuous defect correction (also called 
differential correction) and discrete defect correction (also called difference correction). We will present 
the main ideas behind our approach to continuous defect correction, then simply explain how discrete 
defect correction would differ. 
 Defect correction corrects the original numerical solution by re-solving the original problem with the 
truncation error estimate added to the right-hand side. Defect correction requires minimal code intrusion. 
The exact defect correction problem is defined as 

)~()~( uuIL h

h

h   (52) 

If the exact truncation error )~(uh  is added as a source term, the resulting numerical solution is the exact 
solution to the PDEs or integral equations restricted to the computational grid. Our defect correction 
implementation takes the form 

)()( h

k

hhh uIuL   (53) 

where uu ~  and the discretization error estimate is 

uuhhh
~  . (54) 

DISTRIBUTION A: Distribution approved for public release.



26 
 

Defect correction requires a second numerical solution on the original computational mesh; however, 
computational expense is reduced because the original numerical solution to the primal problem is used to 
initialize the second simulation, thus providing a very good starting solution. 

Adjoint Methods 
 Adjoint methods provide a means by which discretization error estimation and mesh adaptation can 
be targeted to a solution functional (e.g., lift or drag). We begin our discussion of adjoint methods by 
reinterpreting adjoint methods in the GTEE framework. Consider a scalar solution functional )~(uJ  and 

its discrete counterpart )( hh uJ . We may be interested in estimating the discretization error in this 
functional  

)~()( uJuJ hhh  , (55) 

assessing the sensitivity of this functional to local values of the truncation error, or both. For the 

continuous adjoint, we first form the Lagrangian using the inner product (e.g., 
b

a
dxxgxfgf )()(, ) 

)~(,)~(),~( uLuJu   (56) 

Next, linearize both J and L about the general function u: 
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
 )~()()~(and)~()()~( .  

Inserting these linearizations into the right-hand side of Equation (56) and neglecting the higher-order 
terms gives 
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 Replacing the general function u in Equation (57) with the prolongation of a numerical solution, i.e., 

hhuIu  , we have 

)~(,)(,)(),~( hh
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where the adjoint (dual) problem is defined as 

hhhh uIuI u

L

u

J




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

 , . (59) 

Once the adjoint problem is solved for , the term in brackets in Equation (58) will be equal to zero. By 
noting that the PDE is equal to zero over the entire domain (i.e., 0)~( uL ), we can use Equation (56) to 
replace the Lagrangian with )~(),~( uJu   in Equation (58) to give 
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)(,)~()( hhhh uILuJuIJ   (60) 

where )( hhuIL  is simply the continuous residual (an estimate of the truncation error). If the functional J 
involves an integral, then the numerical integration errors can be estimated as 

)()(int hhhheg uIJuJ  . (61) 

Combining Equations (60) and (61) with the definition of the discretization error in the functional given 
by Equation (55), we have 

)(,)~()()()()~()( int hheghhhhhhhhh uILuJuIJuIJuJuJuJ     

or simply  

)(,)~()( int hheghhh uILuJuJ   . (62) 

 The discretization error in the solution functional is thus due to 1) the integration error (which can be 
reduced simply by improving the numerical quadrature used in evaluating the integral) and 2) the local 
truncation error (or residual) weighted by the adjoint sensitivities . The solution to the adjoint problem 
thus provides the sensitivity of the solution functional to local truncation error sources. A discrete adjoint 
could be derived similarly which uses the discrete residual: 

)~()~()( int uILuJuJ h

h

T

eghhh    (63) 

where T  is a row vector containing the adjoint sensitivities and )~( uIL h

h  is a column vector containing 

the local discrete residual (i.e., the truncation error) for each cell in the mesh. Both the continuous and 
discrete forms of the adjoint method will be investigated within the GTEE framework. Methods for 
formulating the sensitivities needed for the adjoint methods will be examined including analytical 
derivative evaluation, numerical derivative evaluation, and complex numbers (Squire and Trapp, 1998). 

VIII. Local Error Estimation Results 

Local Error Estimates: NACA 0012 Airfoil 

For the local error estimates, the truncation error is estimated using the k-exact, least squares (LSQ), 
DSENO single grid methods as well as the coarse grid method (with and without the correction term) and 
the fine grid method (with and without the correction term). Defect correction and ETEs are solved with 
each of the truncation error estimates. 
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 The truncation error estimates for the subsonic airfoil at zero degrees angle of attack are shown in 
Figure 14. The k-exact and fine grid method with the correction term capture the truncation error around 
the leading edge of the airfoil. The least squares method compares well also with the exception of a large 
truncation error estimate at the leading edge. The DS-ENO method results in a very noisy truncation error 
estimate. The discretization error in pressure is shown in Figure 13. The accuracy of the truncation error 
estimates directly correspond to the accuracy of the discretization error estimate. The k-exact estimate 
compares well to the exact discretization error and the DS-ENO method is relatively noisy. 

 
Figure 14.  Estimated truncation error for the mass eqn. for the NACA 0012 airfoil at M=0.5 and =0.  

 
Figure 13.  Estimated defect correction discretization error estimates for pressure for the NACA 0012 
airfoil at M=0.5 and =0.  
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To compare the difference between defect correction and the ETEs, the exact, defect correction estimate, 
and two ETE estimates are shown in Figure 15. One ETE estimate is computed using a Jacobian 
computed for first-order discrete equations and the other is computed using a Jacobian computed for the 
second order discrete equations. The results are very nearly identical and only differ by fractions of a 
percent. The pressure on the upper wall is also compared in Figure 16. The results are nearly identical for 
the ETE estimates. The result is fortuitous because a first order Jacobian is often readily available when 
using an implicit solver. The solution time for the ETEs using the first order Jacobian is negligible 
compared to the expense of the defect correction estimate. For comparison, the primal solution took 24 
minutes while using the k-exact truncation error estimation method, the defect correction error estimate 
requires about nine minutes to solve while the first-order ETE took less than a second to compute with 
three iterations. The second-order ETE cost about five seconds to compute with seven iterations. The 
first-order ETE is so inexpensive because the equations are linear. The difference between the first- and 
second-order ETE is negligible for all applications so only the first-order ETE results are shown. The 
ETE estimates slightly underestimate the discretization error at the leading edge compared to defect 
correction.  Both residual-based methods accurately estimate the discretization error while Richardson 
extrapolation misses the sign and magnitude near the leading edge significantly. 
 

 
 

 
Figure 15.  Estimated defect correction and ETE discretization error estimates for pressure for the 
NACA 0012 airfoil at M=0.5 and =0 using the k-exact reconstruction method (solid is the 
benchmark solution).  
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 Figure 17 and Figure 18 compare the pressure on the wall for defect correction and ETE 
discretization error estimates compared to the exact discretization error. For all cases, the ETE estimate 
compares well to the defect correction estimate. There are slight differences near discretization error 
peaks, and overall, the defect correction estimate is more accurate because the estimate results from 
nonlinear equations compared to the linearized ETEs. In terms of truncation error estimation, the k-exact 
method is the most accurate with only a minor difference in peak error near the leading edge. The LSQ, 
DS-ENO, and fine grid method with the correction factor compare well for the entire airfoil with larger 
differences near the leading edge of the airfoil. All methods compare better than Richardson extrapolation 
except for the coarse grid methods which are inaccurate over the entire airfoil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16.  Estimated defect correction and ETE discretization error estimates for pressure along the 
upper side of the the NACA 0012 airfoil at M=0.5 and =0 using the k-exact reconstruction method 
(solid is the benchmark solution).  
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Figure 17.  Estimated defect correction discretization error estimates for pressure along the upper side 
of the NACA 0012 airfoil at M=0.5 and =0 (solid is the benchmark solution).  
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IX. Functional Error Estimation Results 
 As alternatives to the adjoint method, which can only provide a DE for a single functional output per 
dual solve, both defect correction methods (DC) (Pereyra, 1965, 1967, 1968) and the error transport 
equations (ETEs) (Phillips and Roy, 2011) provide local DE estimates driven by TE estimates and can be 
used to estimate error in any functional of interest for a single solve. DC methods treat the TE estimate as 
a source term to drive the primal solver towards a higher order solution. This TE source term can be 
thought of in a similar manner to the source term utilized by the method of manufactured solutions 
(MMS) (Roache, 2009; Oberkampf and Roy, 2010) to drive the discrete governing equations towards a 
preselected solution. If the exact TE is known, then the discrete governing equations can be driven 
towards computing the exact solution of the continuous governing equations. In practice, the TE is 
approximated and the computed solution should converge towards the continuous solution at a higher 

 
Figure 18.  Estimated ETE discretization error estimates for pressure along the upper side of the 
NACA 0012 airfoil at M=0.5 and =0 (solid is the benchmark solution).  
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order rate. DC methods are extremely simple to implement as they only require the formulation of the TE 
estimate and the ability to include a source term in the discrete solver. In addition, DC methods are 
generally much less costly to solve than the original discrete system as they can be initialized using the 
already available discrete solution. 
 For the results given below, the quasi-1D Euler equations are solved using a MUSCL scheme (van 
Leer, 1979) with  = 1/3 (corresponding to parabolic reconstructions on a Cartesian mesh), the van 
Albada flux limiter (van Albada et al., 1982), and Roe’s approximate Riemann solver flux scheme (Roe, 
1981). The Mach number distributions and nozzle geometry are shown in Figure 19 for inflow stagnation 
conditions of po = 300 kPa and To = 600 K. The nozzle is described by a Gaussian bump that avoids 
curvature discontinuities that can cause TE spikes: 

.11,
2

5exp8.00.1)(
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 The functional of interest for the adjoint error estimation is the integral of pressure along the nozzle 
normalized by the inflow stagnation pressure as given by: 
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. (65) 

and has a value of 1.0187219 for the isentropic case and 1.2972908 for the shocked case as calculated 
using a seven point Gauss quadrature of the analytic solution on a grid with approximately 1 million cells. 
For the discrete value of the integral, the trapezoidal rule is applied to the reconstructed solution. 

 
Figure 19.  Quasi-1D nozzle area and Mach number distributions. 
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 Figure 20a shows the behavior of the base solution error and remaining error after adjoint correction 
for the functional using the exact TE, the weak estimate of the TE, the embedded grid approach, and the 
corrected embedded grid approach on a series of Cartesian meshes. As expected, the base error converges 
at a second order rate. The standard embedded grid approach only demonstrates a half order of magnitude 

reduction in the remaining error with a second order convergence rate, a result seen elsewhere in literature 
(Nemec and Aftosmis, 2007). For the exact TE and weak form estimate, the remaining error converges at 
an approximately third to fourth order rate, before beginning to level off towards a first to second order 

 
Figure 20.  Functional base error and remaining error for isentropic expansion for the adjoint method 
with various TE estimation techniques (a) and for the adjoint, DC, and ETEs in (b). Note the 
difference in scales. Demonstration of sign change in TE causing TE spike (c) and functional base 
error and remaining error for cropped domain which removes the TE spike (d).  
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rate at finer grid levels. The corrected embedded grid method shows a third order convergence rate and 
surpasses the weak form TE estimate in a region where the weak form begins to demonstrate first order 
convergence. This lower order convergence is due to a sign change in the TE which creates a zeroth order 
spike in the TE, as shown in Figure 20c near x = 0.95m. The discrete residual includes a limiter function 
which smooths out this oscillation in the embedded grid TE estimate and prevents it from dominating the 
error estimate. If the domain is shortened to remove the region which contains the TE spike, then the 
performance of the weak form based adjoint error estimate is improved, as shown in Figure 20d, but it 
now demonstrates a scalloped region due to a change in the sign of the predicted remaining error. It 
should be noted that the results of Figure 20d are obtained through new solutions of the primal and dual 
problems on the shortened domain instead of simply removing the contributions of the adjoint weighted 
TE from the cropped region of the domain. 
 Comparisons between the ETEs, DC, and the adjoint method are made in Figure 20b. Most notably, 
when the exact TE is used, the DC essentially returns the exact functional value, and the ETEs and adjoint 
method converge exactly the same. The better performance of the DC method can be attributed to the fact 
that it is solving the nonlinear governing equations, while both the adjoint and ETEs are solving 
linearized problems. A lower order approximation for the ETEs is included where the linearized equations 
only consists of first order Jacobians. On coarser meshes, the low order formulation of the ETEs will not 
converge and perform about two orders of magnitude worse than the fully linearized ETEs on the finest 
mesh. When an approximate TE estimate is used, in this case it is the weak formulation discussed above, 
the ETEs, DC, and the adjoint method all perform similarly well, but the DC does outperform the others 
on the coarser mesh levels. Given the similarity in performance, it appears that either the DC method or 
ETEs could be used in place of an adjoint method in order to provide functional error estimates. Results 
for the first order ETEs are not included for the approximate TE method as the DE estimates were much 
worse than the rest. 
  

X. Mesh Adaptation 

Introduction 
 Performing mesh adaptation involves two distinct aspects: choosing a method for driving the 
adaptation and choosing a mechanism to actually perform the adaptation. While this report is clearly 
focused on the former, here we briefly mention the mechanism for performing the adaptation that was 
used. As discussed before, we limited the scope of this effort by demonstrating our error control 
techniques on structured meshes. Since h-adaptation is not possible on structured meshes, r-adaptation 
(i.e., mesh movement) was used. Simple spring analogy and elliptical adaptation methods (Baker, 1997) 
can be used when only a single adaptation driver function is available (e.g., the total truncation error). 
When more detailed information is available regarding mesh quality contributions, then the spring 
analogy approach can be supplemented with torsional springs to mitigate skewness effects (e.g., 
Nakahashi and Deiwert, 1986). Furthermore, variational methods allow for mesh adaptation with the 
addition of mesh quality constraints (e.g., Lapenta, 2003).  
 Our approach for driving the mesh adaptation is focused on the residual/truncation error, including 
adjoint weighting when specific solution functionals are of interest. We maintain that the 
residual/truncation error is the only theoretically sound approach to driving mesh adaptation. Adaptation 
based on solution features has been shown to fail (Dwight, 2008), sometimes “disastrously” (Ainsworth 
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and Oden, 2000). Adaptation based on the discretization error neglects the effects of error transport from 
other regions of the domain (e.g., through convection and diffusion) and has also been shown to be a poor 
driver for mesh adaptation (e.g., Gu and Shih, 2001). Adaptation based on recovery-based error estimates 
(e.g., Zienkiewicz and Zhu, 1992) has seen some success for linear elliptic problems in finite elements, 
but this success is not expected to carry over to hyperbolic problems using finite difference or finite 
volume methods.  
 When the truncation error is available (e.g., from a continuous or discrete residual), then it can be 
used directly to drive the adaptation process. We explored different methods for assembling the truncation 
error for each conservation equation (mass, momentum, and energy) into a single weighting function to 
drive adaptation. Since each conservation equation has different magnitudes (e.g., mass equation versus 
total energy equation), we investigated methods for scaling the truncation error based on appropriate 
reference truncation error values from a baseline (i.e., unadapted) mesh. Once this weight function is 
assembled, appropriate smoothing or filtering methods are used to provide for smooth adaptation. 
Limiting of the weighting function is also needed to prevent small values (which can occur when the 
truncation error goes from positive to negative) from affecting the adaptation process. For example, 
spring-based adaptation when two nodes are connected with a spring with near zero spring constant can 
result in large local mesh deformations and result in mesh crossover. When one is instead interested in 
targeted mesh adaptation (i.e., mesh adaptation to reduce the error in a chosen solution functional), then 
the adjoint solution provides the appropriate weighting for how the local cell’s residual/truncation error 
will affect the functional. For example, instead of adapting the mesh purely on the magnitude of the 
truncation error, one might instead adapt the mesh based on the truncation error weighted by the adjoint 
solution.  
 When conducting adaptation, it is important to monitor the convergence of the adaptation scheme to 
know when to stop adaptation. However, an appropriate adaptation monitor must be selected that is 
consistent with the adaptation schemes being used in order to do this. For this investigation, two 
adaptation monitors are selected based upon the concept of equidistribution. The first adaptation monitor 
is a truncation error metric given by Equation (66) which compares the L2 norm of truncation error on the 
adapted grid to the L2 norm of truncation error on the initial grid. The L2 norm of truncation error in 2D is 
given by Equation (67) where p is equal to 2, i,j represents the truncation error in a given cell, Ai,j is the 
area of a given cell, and A is the total area of the domain. 
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 The second adaptation monitor is the weight function equidistribution error given by Equation (68) 
and is taken from previous work by Choudhary (2014): 
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where  is the equidistributed value of the quantity weight function times cell area across the entire 
computational domain. For all test cases in this study, the convergence tolerance for these adaptation 
monitors was set to 0.1. Beyond the tolerance of 0.1, mesh movement is minimal and the benefit of 
further adaptation does not outweigh the added computational cost. 
 Since truncation error is used as the driver for adaptation, it is necessary to formulate a weight 
function in terms of truncation error. To holistically adapt the mesh for the entire system, the truncation 
error from each governing equation must be combined in a consistent manner. This is accomplished by 
defining the local weight function as the average of the absolute value of each equation’s truncation error 
normalized by its maximum absolute value on the initial or uniform grid. This is given by Equation (69) 
where neq is the number of governing equations in the system: 
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 When constructing the weight function in this fashion, often there is some amount of high frequency 
noise present. To prevent the adaptation schemes from diverging or causing mesh crossover, it is 
necessary to apply a smoothing algorithm to the weight function prior to its application. Weight function 
smoothing is accomplished by applying the elliptic smoother given in Equation (70): 
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Although some weight function smoothing is required, it is also important that the weight function is not 
oversmoothed. If the weight function is over-smoothed, information about the problem is lost, and the 
amount of discretization error improvement will likely be diminished. 

Adaptation Results 
 This report examines the effectiveness of several 2-D r-adaptation schemes in reducing discretization 
error in numerical solutions. The adaptation schemes used include an adaptive Poisson grid generator 
(Anderson, 1990), a variational grid generator (Brackbill and Saltzman, 1982), a center of mass based 
scheme (Laflin, 1997), and a scheme based on deforming maps (Liao and Anderson, 1992). These 
schemes are applied to Mach 1.2 flow around a 12 deg. downward turn. Discretization error is computed 
using the known exact solution. Discretization error reductions of up to thirteen times are achieved on 
adapted grids relative to the discretization error present on a uniform grid of the same size. This error 
reduction results in a high degree of efficiency since the primal problem converges at a sublinear rate (i.e., 
less than first order) as expected (Banks et al., 2008).  
 The test problem is a 2D supersonic expansion fan generated by a Mach 1.2 flow around a 12° 
downward turn. Three instances of this problem are examined and will be denoted as the “edge case,” the 
“corner case,” and the “shifted case.” The computational domain for these cases can be found in Figure 
21. The grid for each case setup is a 6565 node grid extending from 0 m to 1 m in both the x and y 
directions. The inflow conditions for all cases are static pressure and temperature of 100 kPa and 273 K, 
respectively. 
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Edge Case 

 Truncation error and discretization error improvements for the edge case of the supersonic expansion 
fan achieved by each adaptation scheme may be found in Tyson et al. (2015). In the best case, truncation 
error is decreased by a factor of ten when using the center of mass approach (Laflin, 1997). For the same 
adaptation scheme, discretization error is reduced by a factor of six. Anderson’s adaptation scheme 
(Anderson, 1990) also performs well by achieving a six time improvement in discretization error. The 
Brackbill and Saltzman (1982) and Deformation (Liao and Anderson, 1992) adaptation schemes still 
achieve some amount of discretization error reduction, but at best it is half the reduction seen with the 
other two methods.  
 Qualitative results of truncation error and discretization error reductions for the edge case of the 
supersonic expansion fan are presented in Figure 22 and Figure 23, respectively. Truncation error results 
are only presented for the x-momentum equation while discretization error results are only presented for 
pressure. For this case, the majority of truncation error is located at the beginning and end of the 
expansion fan, as seen in Figure 22e. Since truncation error is high in these regions of the domain, the 
adaptation schemes pull nodes to the beginning and end of the expansion fan as illustrated by the adapted 
grids in Figure 22a - Figure 22d. 
 

 
Figure 21.  Supersonic expansion fan domains: black square denotes the corner case, blue square 

denotes the edge case, and the green square denotes the shifted case. 

12°

M = 1.2
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Figure 22.  Truncation error for the x-momentum equation: edge case. 
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Figure 23.  Discretization error for the pressure: edge case. 
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 Discretization error comparisons for u-velocity along a line through the domain at x = 0.5 m is shown 
in Figure 24. The spikes in discretization error in this figure at approximately y = 0.05 m and y = 0.95 m 
correspond to the edges of the expansion fan. It can be seen that the Anderson and center of mass 
adaptation schemes best reduce these spikes in discretization error. Figure 25 illustrates the adaptive 
convergence of the Anderson adaptation scheme for this case. The L2 norm of truncation error and the 
weight function equidistribution error are plotted against the number of adaptation cycles. Although it 
may appear that these monitors could converge further, truncation error norms do not continue to 
converge and no increased benefit is found by adapting more than 50 adaptation cycles for this case. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 24.  Discretization error for u-velocity at x = 0.5 m: edge case. 

DISTRIBUTION A: Distribution approved for public release.



42 
 

 

Corner Case 

 Truncation and discretization error improvements for the corner case of the supersonic expansion fan 
achieved by each adaptation scheme may be found in Tyson et al. (2015). Similar to the edge case, the 
greatest truncation error reduction is achieved using the center of mass approach with about an eight time 
reduction. Discretization error for this adaptation scheme is reduced by a factor of approximately five for 
each primitive variable. Although Anderson’s adaptation scheme does not perform as well here as with 
the edge case, over a three time improvement in discretization error is achieved. The Brackbill and 
Saltzman and Deformation adaptation schemes achieve a peak reduction factor in discretization error of 
1.87 and 1.49, respectively.  
 Most of the discretization error for this case is present in the bottom left corner of the domain at the 
start of the expansion fan. With this in mind, discretization error is only plotted for each adaptation 
scheme in the bottom left corner of the domain to better illustrate the results for each adaptation method. 
Discretization error in density is given in Figure 26. It can be seen in Figure 26a and Figure 26c how well 
the Anderson and center of mass schemes reduce discretization error in this region relative to the 
Brackbill and Saltzman and Deformation adaptation schemes, Figure 26b and Figure 26d, respectively. 
 

 
Figure 25.  Adaptive convergence: Anderson method (edge case). 
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Figure 26.  Discretization error for the density: corner case. 
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Figure 10. Discretization Error in Pressure at x = 0.5m  
 

Figure 11. Adaptive Convergence: Center of Mass 

 
Figure 28.  Adaptive convergence: center of mass method (corner case). 

 
Figure 27.  Discretization error for pressure at x = 0.5 m: corner case. 
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 Discretization error comparisons for pressure along a line through the domain at x = 0.5m may be 
found in Figure 27. Similar to the edge case, the spikes in discretization error in this figure at 
approximately y = 0.25m and y = 0.75m correspond to the edges of the expansion fan. Again, the 
Anderson and center of mass adaptation schemes are able to reduce these spikes in discretization error the 
most. Figure 28 illustrates the adaptive convergence of the center of mass adaptation scheme for this case. 
The L2 norm of truncation error and the weight function equidistribution error are plotted against the 
number of adaptation cycles. Here adaptation is performed for 150 adaptation cycles. Past 50 adaptation 
cycles, the adaptation is converged and no added benefit is achieved by further adaptation. 

Shifted Case 

 The discretization error in pressure for the shifted case is shown in Figure 29 for the uniform mesh 
and the center of mass adaptation method. The center of mass approach achieved a factor of 13.5 
reduction in the L2 norm of the discretization error in the pressure. These higher improvement factors 
relative to the corner case are due to the singularity being located on only one boundary instead of the 
intersection of two boundaries. The discretization error in the pressure extracted from a line at x = 0.5 m 
is shown in Figure 30. Large reductions in the error are found at the beginning and ending of the 
expansion fan relative to the uniform mesh. 
 
 

 
 
 
 
 

 
Figure 29.  Discretization error in pressure for the shifted case: uniform mesh (left) and center of mass 

adapted mesh (right). 
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Grid Study 

 A grid study is conducted for the corner case of the 2D expansion fan. The L2 norm of discretization 
error in pressure is compared on uniform and adapted grids for five uniformly refined grid levels ranging 
from 99 to 129129. Each adapted grid in this study is generated independently starting from a uniform 
grid. Figure 31 illustrates the savings which can be achieved when using r-adaptation as a means of 
reducing discretization error. For example, to achieve the same level of discretization error as the coarsest 
adapted grid, a uniform grid which is three grid levels finer would be required. This uniform grid would 
have 64 times the number of cells of the coarsest adapted grid for this 2D problem. It would be 512 times 
as many cells in 3D. This equates to huge computational savings especially when a lower level of 
discretization error is desired. Similar trends can also be seen with the other primitive variables for this 
case. Also, the order of convergence between the uniform and adapted grids is quite similar. This is 
surprising considering the adaptation schemes used in this study provide no guarantee that the order of 
convergence on adapted grids will be the same as consistently refined unadapted grids. The order of 
convergence using discretization error in pressure for the three finest grid levels is computed to be 

68.0p


. This convergence rate is consistent with what is expected for problems containing linear 
discontinuities such as this expansion fan case. Banks et al. (2008) show that for problems with linear 
discontinuities the observed order of accuracy will reduce to: 

1


f

f

p

p
p
  (71) 

where pf is the formal order of accuracy of the discretization. With a formal order of accuracy of pf = 2, 
the expected order of accuracy for this case will be 66.0p


. 

 
Figure 30.  Discretization error for pressure at x = 0.5 m: shifted case. 
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